Bone strength is maintained after 8 months of inactivity in hibernating golden-mantled ground squirrels, Spermophilus lateralis.
نویسندگان
چکیده
Prolonged inactivity leads to disuse atrophy, a loss of muscle and bone mass. Hibernating mammals are inactive for 6-9 months per year but must return to full activity immediately after completing hibernation. This necessity for immediate recovery presents an intriguing conundrum, as many mammals require two to three times the period of inactivity to recover full bone strength. Therefore, if hibernators experience typical levels of bone disuse atrophy during hibernation, there would be inadequate time available to recover during the summer active season. We examined whether there were mechanical consequences as a result of the extended inactivity of hibernation. We dissected femur and tibia bones from squirrels in various stages of the annual hibernation cycle and measured the amount of force required to fracture these bones. Three groups were investigated; summer active animals were captured during the summer and immediately killed, animals in the 1 month detraining group were captured in the summer and killed following a 1-month period of restricted mobility, hibernating animals were killed after 8 months of inactivity. A three-point bend test was employed to measure the force required to break the bones. Apparent flexural strength and apparent flexural modulus (material stiffness) were calculated for femurs. There were no differences between groups for femur fracture force, tibia fracture force, or femur flexural strength. Femur flexural modulus was significantly less for the 1 month detraining group than for the hibernation and summer active groups. Thus, hibernators seem resistant to the deleterious effects of prolonged inactivity during the winter. However, they may be susceptible to immobilization-induced bone loss during the summer.
منابع مشابه
Myosin isoform expression and MAFbx mRNA levels in hibernating golden-mantled ground squirrels (Spermophilus lateralis).
Hibernating mammals present many unexplored opportunities for the study of muscle biology. The hindlimb muscles of a small rodent hibernator (Spermophilus lateralis) atrophy slightly during months of torpor, representing a reduction in the disuse atrophy commonly seen in other mammalian models. How torpor affects contractile protein expression is unclear; therefore, we examined the myosin heavy...
متن کاملBile constituents in hibernating golden-mantled ground squirrels (Spermophilus lateralis)
BACKGROUND Golden-mantled ground squirrels (S. lateralis) are anorexic during the winter and survive by exploiting hibernation to reduce energetic demands. The liver normally plays a critical role in fueling and regulating metabolism and one might expect significant changes in hepatobiliary function with hibernation. We analyzed bile collected from animals in summer, animals in winter that were...
متن کاملPeriodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels.
Golden-mantled ground squirrels (Spermophilus lateralis) undergo seasonal hibernation during which core body temperature (T(b)) values are maintained 1-2 degrees C above ambient temperature. Hibernation is not continuous. Squirrels arouse at approximately 7-day intervals, during which T(b) increases to 37 degrees C for approximately 16 h; thereafter, they return to hibernation and sustain low T...
متن کاملPreference of IRES-mediated initiation of translation during hibernation in golden-mantled ground squirrels, Spermophilus lateralis.
Mammalian hibernation involves virtual cessation of energetically consumptive processes normally vital to homeostasis, including gene transcription and protein synthesis. As animals enter torpor, the bulk of initiation of translation is blocked at a body temperature of 18°C in golden-mantled ground squirrels [Spermophilus (Callospermophilus) lateralis]. Previous data demonstrated regulation of ...
متن کاملRod photoreceptors and scotopic vision in ground aquirrels.
Ground squirrel retinas contain a relatively small complement of rods (5--10% of all photoreceptors) which are thought to provide the basis for a weak scotopic visual capacity. In a previous investigation of the California ground squirrel (Spermophilus beecheyi) involving the recording of a retinal gross potential, the electroretinogram (ERG), electrophysiological evidence for a viable scotopic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 212 17 شماره
صفحات -
تاریخ انتشار 2009